The main concept of the BHD Star Cineplex, designed by Tram Anh Nguyen, is reflected through her perception of design in regards to impermanence. A direct correlation can be drawn from this concept to parametric design. Parametric design is a way to evaluate and refine a design through adjustment of various parameters that affect the final result of the model. Changeability is the goal of any parametric model. Seen through a wider lens, parametric modeling captures the lifespan of a design through the passage of time. And through the point of view of impermanence, one can investigate mutability, materiality, temporality and its effects on aesthetics through parametric design.

The parametric model for this project consists of a base pattern for the façade: a layered array of primitive shapes, such as a hexagon, triangle, and cube. These basic shapes can be designed and evaluated at various scales to create a pattern within the parametric model since inherently, patterns themselves are adaptable. Using these methodologies of mutability, the aesthetic value of these basic shapes is developed through the patterning of the façade.

In order to hone in on the materiality of the façade’s structure, the model can be run through Karamba, a structural analysis plugin for Grasshopper, which can determine the most optimal cross section of the individual structural members that comprise the modular design of the façade.

How temporality effects design can be visualized using Ladybug, an environmental analysis plugin for Grasshopper. By conducting Sunlight Hours studies, the building’s lighting usage can be optimized by knowing which areas on the façade receive the most sunlight within a six hour period, during the summer and winter solstices.

The flow of the design process, augmented by parametric design, and the idea of impermanent devices go hand in hand. Both are subject to the oscillations and transience in nature. The BHD Star Cineplex holds true to these philosophical concepts with its distinctively multilayered yet simple design process.